Wellbeing and Lifestyle

Xinran Du

1. Data

The Wellbeing_and_lifestyle_data.csv dataset (https://www.kaggle.com/ydalat/lifestyle-and-wellbeing-data
(https://www.kaggle.com/ydalat/lifestyle-and-wellbeing-data)) contains 12,757 responses to global Work-Life
Balance survey. This online survey includes 23 questions about the way we design our lifestyle and achieve work-
life balance.

It evaluates how we thrive in both professional and personal lives from five dimensions: healthy body, healthy
mind, expertise, connection, meaning. The two main aspects I’'m going to focus on are healthy body and healthy
mind. For healthy body, the goal is to determine whether DAILY_STEPS is the predictor of BMI RANGE . For healthy
mind, the purpose is to determine whether DAILY_STRESS is influenced by GENDER and SUFFICIENT_INCOME .

The values in this dataset are mainly discrete variables (e.g. count, rating and condition). Therefore, cumulative-
link mixed model and ordinal logistic regression model will be adapted.

2. Packages

First, we load tidyverse package, a collection of essential packages in R. Here, we use it for data import(readr),
wrangling, transformation (tidyr , dplyr) and visualisation (ggplot2).

Second, we load likert, HH, ggcorrplot, gganimate and streamgraph for visualising data.

likert is an approach to analyse Likert response items, with an emphasis on visualizations. The stacked bar plot
is the preferred method for presenting Likert results.

HH is created by Richard M. Heiberger and Burt Holland to explore the extensive use of graphical displays, and
show how accompanying traditional tabular results are used to confirm the visual impressions derived directly from
the graphs.

In my work, both likert and HH are used for stacked bar chart.

ggcorrplot package can be used to visualise a correlation matrix using ggplot2 . It includes functions for
reordering the correlation matrix, displaying the significance level on the plot, and computing a matrix of correlation
p-values.

gganimate package provides a set of grammar, fully compatible with ggplot2 for specifying transitions and
animations in graphics.

The streamgraph pacakge is an htmlwidgetl thatis based on the D3.js2 JavaScript library. Byron &
Wattenberg describes streamgraphs as “a generalization of stacked area graphs where the baseline is free,
thereby making it easier to perceive the thickness of any given layer across the data”. This package allows us to
build a streamgraph involving an interactive component that enables filtering each “flow”.

Third, we load ordinal, MASS and emmeans for building models.

ordinal provides an approach for implementation of cumulative link (mixed) models. Estimation is via maximum
likelihood and mixed models are fitted with the Laplace approximation and adaptive Gauss-Hermite quadrature.
Multiple random effect terms are allowed. Here, we use clmm function to build cumulative-link mixed model.

MASS includes functions supporting computer-intensive methods (e.g. GLMMs) mentioned in Venables and
Ripley’s book “Modern Applied Statistics with S” (4th edition, 2002). Here, we use polr function to build ordinal
logistic regression model.

emmeans helps to obtain estimated marginal means (EMMs) and compute contrasts or linear functions of EMMs. It
can also estimate and contrast slopes of trend lines. We use this for pairwise comparisons.

library(tidyverse)
library(HH)
library(likert)
library(ggcorrplot)
library(gganimate)
library(streamgraph)
library(ordinal)
library(MASS)
library(emmeans)

3. Data wrangling

Read Wellbeing_and_lifestyle_data.csv into R and call it mydata.
mydata <- read_csv("Wellbeing and_lifestyle_data.csv")

View the dataset. We can see there are 12,756 responses with 23 attributes.

structure(mydata)

A tibble: 12,756 x 23
Timestamp FRUITS_VEGGIES DAILY_STRESS PLACES_VISITED CORE_CIRCLE

#i <chr> <dbl> <dbl> <dbl> <dbl>

1 07/07/20~ 3 2 2 5

#t 2 07/07/20~ 2 3 4 3

3 07/07/20~ 2 3 3 4

4 07/07/20~ 3 3 10 3

5 07/07/20~ 5 1 3

6 07/08/20~ 3 2 9

7 07/08/20~ 4 2 10 6

8 07/09/20~ 3 4 5 3

9 07/09/20~ 5 3 6 4

10 07/10/20~ 4 4 2 6

... with 12,746 more rows, and 18 more variables: SUPPORTING_OTHERS <dbl>,
SOCIAL_NETWORK <dbl>, ACHIEVEMENT <dbl>, DONATION <dbl>, BMI_RANGE <dbl>,
#HH # TODO_COMPLETED <dbl>, FLOW <dbl>, DAILY_STEPS <dbl>, LIVE_VISION <dbl>,
#H # SLEEP_HOURS <dbl>, LOST_VACATION <dbl>, DAILY_SHOUTING <dbl>,

SUFFICIENT_INCOME <dbl>, PERSONAL_AWARDS <dbl>, TIME_FOR_PASSION <dbl>,
HH # DAILY_MEDITATION <dbl>, AGE <chr>, GENDER <chr>

Break down Timestamp , as we need year to be an independent column for analysis. Timestamp from 2015 to
2017 has three components: day, month, year (e.g. 07/07/2015); data from 2018 to 2020 includes four
components: day, month, year, time (e.g. 01/01/2019 10:53). Firstly, we separate col = "Timestamp" into three
values c("day", "month", "year") by the separator /. Then, we separate year containing time (e.g. 2019
10:53) into two values year and time .

"Timestamp", into = c("day", "month", "year"), sep = "/")
"year‘", into = c(uyear\u, "time"), Sep = n u)

mydata <- separate(mydata, col
mydata <- separate(mydata, col

Warning: Expected 2 pieces. Missing pieces filled with "NA® in 10004 rows [1, 2,
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...].

Recode year . Since both dplyr and likert package have recode function and they work differently, we need
to specify the function we use is from dpltr. year has two formats (e.g. 2015 and 15) and we only want to
recode 15 as 2015 . Set .default=NULL so unmatched values will not be changed.

mydata$year <- dplyr::recode(mydata$year, "15" = "2015", "16" = "2016", "17" = "2017", "18" = "2
018", .default = NULL)

View the data. We can check Timestamp have been separated into four columns and year has been separated
from it. NA is due to Timestamp from 2015 to 2017 does not contain time component.

str(mydata)

tibble [12,756 x 26] (S3: tbl_df/tbl/data.frame)

##
##t
##
##
#H#
##
H##
##
#H#
##
##
##
#H#
##
##t
##
##
##
##
##
#H#
##
##
##
#H#
#H#

4. Healthy Body

$
$

AR RS G R R S L SR S T LS L S

$
$
$

day

month

year

time
FRUITS_VEGGIES
DAILY_STRESS
PLACES_VISITED
CORE_CIRCLE

SOCIAL_NETWORK
ACHIEVEMENT
DONATION
BMI_RANGE
TODO_COMPLETED
FLOW
DAILY_STEPS
LIVE_VISION
SLEEP_HOURS
LOST_VACATION
DAILY_SHOUTING

PERSONAL_AWARDS

AGE
GENDER

: chr
: chr
: chr
: chr
: num
: num
: num
: num
SUPPORTING_OTHERS:

num

: num
:onum
: num
:onum
: hum
:onum
:onum
© num
: num
: num
: num
SUFFICIENT_INCOME:

num

. num
TIME_FOR_PASSION :
DAILY_MEDITATION :

num
num

: chr
: chr

[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:
[1:

12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]
12756]

"e7" "@7" "e7" "o7"

"e7" "@7" "e7" "e7" ...
"2015" "2015" "2015" "2015"
NA NA NA NA ...
22353435
33312243
4310 3 3105
34339634 .
8410 10 10 16 5 3 10 ...
10 10 7 4 16 16 7 3 10 .

(o) W @) WP S R S

22 ...

13 ...

105105090 ...
876106 ...

10 70010000 ...
25020220 ...
21222221...

45810 10 8 10 3 ...
82188238...
3053102101 ...

"36 to 50" "36 to 50" "36 to 50" "51 or more"
"Female" "Female Female Female"

Ui © P LT LT N OUL MO KR ONUIIO® UV NNW
0 Ul A N NNDNDW
Ul © U1 U1 W N Ul N
N O T o T N AN N
N R ORr wWwWN
N oo 00N U w
0N O R O N
=
N

AN W NN DNDNOUU VTN TN DU

Healthy body in this dataset includes four aspects: BMI_RANGE , FRUITS_VEGGIES , DAILY_STEPS, SLEEP_HOURS .

First, we filter these four values out to create a new dataset called mydata_ HB .

mydata_HB <- mydata[c(5, 13, 16, 18)]

Correlation

Check which factor is most relevant to BMI_RANGE . We can use functions from ggcorrplot package to check the
correlations.

cor computes the correlation and cor_pmat compute a matrix of correlation p-values.

method="kendall" indicates Kendall's is used to estimate a rank-based measure of association. We use “kendall”
here because “spearman” cannot compute exact p-value with ties. Kendall tau rank correlation is also a non-
parametric test for statistical dependence between two ordinal variables and can handle ties.

corr <- cor(mydata_HB, method = "kendall")
p.mat <- cor_pmat(mydata_HB, method="kendall")

head(corr)

#H# FRUITS_VEGGIES BMI_RANGE DAILY_STEPS SLEEP_HOURS
FRUITS_VEGGIES 1.00000000 -0.08066264 ©0.188711942 0.086699345
BMI_RANGE -0.08066264 1.00000000 -0.110963165 -0.091674932
DAILY_STEPS 0.18871194 -0.11096317 1.000000000 ©.005557699
SLEEP_HOURS 0.08669934 -0.09167493 0.005557699 1.000000000

head(p.mat)

FRUITS_VEGGIES BMI_RANGE DAILY_STEPS SLEEP_HOURS
FRUITS_VEGGIES 0.000000e+00 1.478855e-24 1.689171e-170 8.199942e-34
BMI_RANGE 1.478855e-24 0.000000e+00 3.951308e-48 3.525617e-30
DAILY_STEPS 1.689171e-170 3.951308e-48 0.000000e+00 4.208667e-01
SLEEP_HOURS 8.199942e-34 3.525617e-30 4.208667e-01 0.000000e+00

The charts shows DAILY_STEPS has the biggest correlation coefficient (-0.11096317) compared to
FRUITS_VEGGIES and SLEEP_HOURS , and it is significantly negatively related to BMI_RANGE (p<0.001).

We can visualise the above results using ggcorrplot function.

hc.order = TRUE reorders the correlation matrix using hierarchical clustering.
type = "lower" helps to get the lower triangle.

lab = TRUE adds correlation coefficients to the plot.

outline.col = "white" changes the outline of each block to white.

p.mat = p.matl adds correlation significance level and insig = "blank" leaves blank on no significant
coefficient.

theme adjust the font size and angle of text on axes.

ggcorrplot(corr,
hc.order = TRUE,
type = "lower",
lab = TRUE,
outline.col = "white",
colors = c("#6D9EC1", "white", "#E46726"),
p.mat = p.mat,
insig = "blank") +
theme(axis.text.x = element_text(size=10, angle=30),
axis.text.y = element_text(size=10))

FRUITS_VEGGIES 0.19

Corr
mam 1.0
0.5
SLEEP_HOURS 0.09 -
-0.5
“ 1.0

BMI_RANGE -0.09 -0.08 -0.11
@2 € Q®
\,\O\) %OO\ 6“(?/
QE? - (g€ﬂ§ ()§§:{/
oV ?‘?\0

The plot shows DAILY_STEPS is most related to BMI_RANGE . Next, we will explore the relationship between these
two factors.

Stacked Bar Chart

The stacked bar chart uses bars to show comparisons between categories and segments of data. Here, it is used
to show the distribution of each level of DAILY_STRESS in different BMI_RANGE group.

Recode the values in BMI_RANGE column. Set .default = NULL so unmatched values won't be changed.
BMI_RANGE has two categories, “1” means “BMI below 25” and “2” means “BMI above 25”. BMI over 25 is used to
categorize a person as overweight.

mydata_HB$BMI_RANGE <- dplyr::recode(mydata_HB$BMI_RANGE, "1"="BMI Below 25", "2"="BMI Above 2
5", .default = NULL)

We can check that the values have been recoded.

str(mydata_HB)

tibble [12,756 x 4] (S3: tbl _df/tbl/data.frame)
$ FRUITS_VEGGIES: num [1:12756] 3 223534354 .,

$ BMI_RANGE : chr [1:12756] "BMI Below 25" "BMI Above 25" "BMI Above 25" "BMI Above 25"
$ DAILY_STEPS : num [1:12756] 5545577813 ...
$ SLEEP_HOURS : num [1:12756] 78 85787 6106 ...

Save the counts as tabular format mydata_BD , because tabular results are used to confirm the visual impressions
derived directly from the graphs in HH package.

group_by is used for grouping two variables BMI_RANGE and DAILY_STEPS.

tally is for counting the number of responses.
mutate is for creating a new column count in which the values equal the obtained numbersin n.

select is for dropping the n variable. Since both dplyr and MAss package have select function and they
work differently, we need to specify the function we use is from dplyr .

spread is for changing the dataset from long format to wide (tabular) format. DAILY_STEPS is the key for header
and count is the value to be filled in data frame.

mydata_BD <- mydata_HB %>%
group_by (BMI_RANGE, DAILY_STEPS) %>%
tally() %>%
mutate(count = n) %>%
dplyr::select(-n) %>%
spread(DAILY_STEPS, count)

View mydata_BD.

print(mydata_BD)

A tibble: 2 x 11

Groups: BMI_RANGE [2]

BMI_RANGE "1 T2 "37 T4 °5° "6° "7 "8 9T T1e
<chr> <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
1 BMI Above 25 497 576 583 533 723 495 442 399 203 661
2 BMI Below 25 473 656 657 692 1007 751 734 829 352 1493

As both HH package and likert package have likert function, we need to define likert here is from HH
package.

Plot the data as divergent stacked bar chart using likert function from HH package.
BMI_RANGE~ indicates the comparison is based on the two categories in BMI_RANGE .

as.percent=TRUE shows the percentage of each segment. As the total number of “BMI above 25” and “BMI below
25” are different, it's hard to compare these two groups by the number, but better with percentage.

ylab

NULL hides the label of y-axis.

xlim = c(-60,-40,-20,0,20,40,60) adjust the range of x-axis.

auto.key=list(cex = 0.6) adjusts the font size of legend.

main= and sub= add titles to the plot.

HH::1likert(BMI_RANGE ~ ., mydata_BD, as.percent = TRUE, ylab = NULL, xlim = c(-60,-40,-20,0,20,4
0,60), auto.key = list(cex = 0.8),

main = "Diverging Stacked Bar Chart\nfor Daily Steps by BMI Range",

sub = "Thousand steps per day")

Diverging Stacked Bar Chart
for Daily Steps by BMI Range

| | i | |
BMI Above 25 - 5112
8
o
=
‘ e
3
o
O
=
(o)
BMI Below 25 - 7644
[I ! [I
60 40 20 0 20 40 60
Percent
1 10 2l <l | 4 5 6 7 8 9 10 W

Thousand steps per day

The plot shows the proportion of people whose daily steps are over 5,000 in “BMI below 25” group is larger than
that in “BMI above 25”. The the proportion of people whose daily steps are less than 5,000 in “BMI below 25”
group is smaller than that in “BMI above 25”. That is to say, people who are overweight could have less steps each
day. Hence, we will explore whether DAILY_STEPS can be predicted by BMI_RANGE .

Cumulative Link Mixed Models (CLMM)

We can build a cumulative link mixed model to determine whether DAILY_STEPS is influenced by BMI_RANGE . So,
we have DAILY_STEPS as DV, BMI_RANGE as IV and AGE as random effect. AGE includes four groups: less than

20, 21 to 35, 36 to 50, 51 or more.

Before we build models, we need to code DV DAILY_STEPS as an ordinal variable, and convert BMI_RANGE and
AGE to factor so they can be treated correctly in the model.

mydata$DAILY_STEPS <- as.ordered(mydata$DAILY_STEPS)
mydata$BMI_RANGE <- as.factor(mydata$BMI_RANGE)
mydata$AGE <- as.factor(mydata$AGE)

Build null model and experimental model using clmm function from ordinal package.

model.clm.null <- clmm(DAILY_STEPS ~ 1 + (1 + BMI_RANGE | AGE), data = mydata)
model.clm <- clmm(DAILY_STEPS ~ BMI_RANGE + (1 + BMI_RANGE | AGE), data = mydata)

Test whether the experimental model and null model differ.

anova(model.clm.null, model.clm)

Likelihood ratio tests of cumulative link models:

##

H## formula: link: threshold:
model.clm.null DAILY STEPS ~ 1 + (1 + BMI_RANGE | AGE) logit flexible
model.clm DAILY_STEPS ~ BMI_RANGE + (1 + BMI_RANGE | AGE) logit flexible
##

#it no.par AIC loglLik LR.stat df Pr(>Chisq)

model.clm.null 12 57283 -28629

model.clm 13 57277 -28625 8.3819 1 0.00379 **

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1

Two models are significantly diferent (P=0.00379), and the experimental model is better fit the data as it has the

lower AIC value (57277<57283).

Show details of model.clm.

summary(model.clm)

Cumulative Link Mixed Model fitted with the Laplace approximation

#Hi#

formula: DAILY_STEPS ~ BMI_RANGE + (1 + BMI_RANGE | AGE)

data: mydata

#H#

link threshold nobs loglLik AIC niter max.grad cond.H
logit flexible 12756 -28625.29 57276.57 2529(5060) 4.58e-02 6.3e+02
it

Random effects:

Groups Name Variance Std.Dev. Corr

AGE (Intercept) 0.007819 0.08843

BMI_RANGE2 ©0.020099 0.14177 -0.603

Number of groups: AGE 4

#Hit

Coefficients:

Hit Estimate Std. Error z value Pr(>|z])

BMI_RANGE2 -0.45414 0.08052 -5.64 1.7e-08 ***

HH ---

Signif. codes: © '***' 9,001 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1
##

Threshold coefficients:

it Estimate Std. Error z value

1|2 -2.73503 0.05799 -47.166
2|3 -1.79904 0.05272 -34.123
3|4 -1.22181 0.05112 -23.899
4|5 -0.77074 0.05039 -15.295
5|6 -0.20687 0.04996 -4.141
6|7 ©.19493 0.04995 3.903
7|8 0.60522 0.05023 12.049
8|9 1.11524 0.05111 21.821
910 1.40069 0.05194 26.970

The result indicates that DAILY_STEPS is significantly influenced by BMI_RANGE (z=-5.64, P<0.001).

Explore the effect of BMI_RANGE using emmeans function.

emmeans(model.clm, pairwise ~ BMI_RANGE, adjust = "none"

$emmeans

BMI_RANGE emmean SE df asymp.LCL asymp.UCL
#t 1 0.3797 0.0493 Inf 0.283 0.4763
#it 2 -0.0744 0.0648 Inf -0.201 0.0525
##

Confidence level used: 0.95

##

$contrasts

contrast estimate SE df z.ratio p.value

1 - 2 0.454 0.0805 Inf 5.640 <.0001

The pairwise comparisons report that DAILY_STEPS of people with BMI below 25 is significantly higher than that of
people with BMI above 25 (z=5.640, £<0.001).

To conclude, people’s daily steps is influenced by their BMI range. When people’s BMI is below 25, they have
more daily steps than people with BMI above 25.

5. Healthy Mind

We will choose DAILY_STRESS from healthy mind as the object. In the survey, DAILY_STRESS has six levels from O
to 6. “0” means not much stress and “5” means a lot of stress.

We need to filter out the missing values in DAILY_STRESS column and save the new dataset as mydata_F .

mydata_F <- mydata %>%
filter(!is.na(DAILY_STRESS))

General Visualisation of Daily Stress by Year
First, let's create a bubble plot to show the number of people on each level of daily stress from 2015 to 2020.
We need to build a new dataset containing the counts of each group.
group_by helps to group the responses by DAILY_STRESS and year.
tally is for counting the number of responses.
mydata_count <- mydata_F %>%

group_by(DAILY_STRESS, year) %>%
tally()

View mydata_count .

head(mydata_count)

#i# # A tibble: 6 x 3
Groups: DAILY_STRESS [1]

#i# DAILY_STRESS year n
H## <dbl> <chr> <int>
1 0 2015 74
2 0 2016 151
3 0 2017 135
##H 4 0 2018 87
5 0 2019 100
6 0 2020 15

Let’s build the plot. Set year on x-axis and DAILY_STRESS on y-axis.
geom_point add the points which represent counts by size.
theme_minimal sets minimalistic theme with no background annotations.

guides(colour = FALSE) hide the legend and labs adds title and labels of axes.

ggplot(mydata_count, aes(x = year, y = DAILY_STRESS, colour = year)) +
geom_point(aes(size = n)) +
theme_minimal() +
guides(colour = FALSE) +
labs(title = "Bubble Plot of Daily Stress by Year",
x = "Year",
y = "Daily Stress")

Bubble Plot of Daily Stress by Year
5 ® @ @ ®

4 @] ® ® ®

W
0
= ® 250
0N
= @ 500
m -
ap & ® @ ® @ 750

1 # @ &] &

0 ° ® ® ° °

2015 2016 2017 2018 2019 2020
Year

The plot shows that people on level 3 account for the largest proportion in every year.

Also, we can build a streamgraph which allows us to interact with data using streamgraph package.
DAILY_STRESS is key, n (count)is value and year refers to the argument “data”.

offset="zero" changes the baseline for the streamgraph to 0.

interpolate="1linear" uses a linear interpolation (making the graph more “pointy”) .

sg_axis_x(1) changes the aesthetics by using year ticks every year.

sg_legend adds a select menu with all the categories of the DAILY_STRESS . Selecting a category will highlight that
stream on the streamgraph.

streamgraph(mydata_count,
"DAILY_STRESS", "n", "year",
offset="zero",
interpolate="1linear") %>%
sg_axis_x(1) %>%
sg_legend(show=TRUE, label="Daily Stress: ")

3,000

2,500

2,000

1,500

1,000

500

2015 2016 2017 2018 2019 2020

Daily Stress:

The graph shows the number of responses in 2016 is the largest. People on level 3 accounts for the largest
proportion, while people on level 0 accounts for the smallest proportion. The number of participants increased
sharply from 2015 to 2016, dropped for the next two years, and grew slightly in 2019. The number of 2020 is small
because the data is only up to February.

Stacked Bar Chart

The above two graphs show the counts of each group. Now we want to check the percentage of each stress level
in these 6 years. Except for HH package, we can also use likert package to create a stacked bar chart.

First, we filter out two columns DAILY_STRESS and year as a new dataset. Then, we need to convert the dataset
from tibble to data frame and encode two vectors as ordered factor so it can work with likert package.

mydata_DY <- as.data.frame(mydata_F[c(3,6)])
mydata_DY$year <- as.ordered(mydata_DY$year)
mydata_DY$DAILY_STRESS <- as.ordered(mydata_DY$DAILY_STRESS)

Check the structure of mydata_DY .

str(mydata_DY)

'data.frame': 12755 obs. of 2 variables:
$ year : Ord.factor w/ 6 levels "2015"<"2016"<..: 1111111111...
$ DAILY_STRESS: Ord.factor w/ 6 levels "@"<"1"<"2"<"3"<..: 3444233545 ...

As both HH package and likert package have likert function, we need to define likert here is from
likert package.

likert function provides various statistics about likert items. As we try to subset the data frame to analyse only
the second column DAILY_STRESS , we need to add drop=FALSE . grouping means the results should be
summarized by year .

likt <- likert::likert(items = mydata_DY[,2, drop=FALSE], grouping = mydata DY[,1])

Plot based on the statistics in 1ikt .

plot(likt)
DAILY_STRESS
|
2020 | 39% 61%
|
2019 | 41% 59%
|
2018 44% 56%
|
2017 | 42% 58%
|
2016 40% 60%
|
2015 42% 58%
100 50 8 50 100
Percentage
0 2 4
Response

It is consistent with our previous result that people on level 3 account for the largest proportion. Moreover, the
percentages of people on higher level (3,4,5) of daily stress are higher than that of people on lower level (0,1,2)
every year.

Animation
We can also visualise the change of daily stress in each age group from 2015 to 2020 using animation.
ggplot puts AGE on x-axis and DAILY_STRESS on y-axis and geom_boxplot is used to build a boxplot.

transition defines how the data should be spread out and how it relates to itself across time.
transition_length represents the relative length of the transition which will be recycled to match the number of
states in the data. state_length represents the relative length of the pause at the states.

guides(colour = FALSE) hides the legend.

title="year={closest_state}" returns the name of the state closest to this frame. Here, the year related to each
state is added to the title.

ggplot(mydata_F, aes(x = AGE, y = DAILY_STRESS, colour = AGE)) +
geom_boxplot() +
transition_states(year,
transition_length = 2,
state_length = 2) +
guides(colour = FALSE) +
labs(x = "AGE", y = "Daily Stress", title = "year = {closest_state}")

year = 2015
5_
4-
v 3-
wn
o
7]
=
©
0 o-
1 s
O_
211035 36 to 50 51 or more Less than 20

AGE

The plot shows that the median, first quartile and third quartile of “21 to 35” and “35 to 50” did not change across
six years. While, the summary of “51 or more” changed every year. The data of “51 or more” group had the lowest
first quartile in 2016 and lowest third quartile in 2020.

Ordinal Logistic Regression Model

Ordinal logistic regression is an extension of simple logistic regression model. In simple logistic regression,
dependent variable is categorical and the modeling ignores its ordering. Ordinal logistic regression model
overcomes this limitation by using cumulative events for the log of the odds computation. In this analysis, we want
to know whether GENDER (1=Male, 2=Female) and SUFFICIENT_INCOME (1=Not or hardly sufficient to cover basic
expenses, 2=Sufficient to cover basic expenses) will influence DAILY_STRESS .

First, let's examine whether GENDER and SUFFICIENT_INCOME are relevantto DAILY_STRESS by cor.test function
from ggcorrplot package.

As cor.test requires numeric vectos, we need to recode GENDER and convert it into number.

mydata_F$GENDER <- dplyr::recode(mydata_F$GENDER, "Male" = "1", "Female" = "2")
mydata_F$GENDER <- as.numeric(mydata_F$GENDER)

In cor.test, method="kendall" indicates Kendall's is used to estimate a rank-based measure of association. We
use “kendall” here because “spearman” cannot compute exact p-value with ties. Kendall tau rank correlation is
also a non-parametric test for statistical dependence between two ordinal variables and can handle ties.

cor.test(mydata_F$GENDER, mydata F$DAILY_STRESS, method = "kendall")

##

Kendall's rank correlation tau

##

data: mydata_F$GENDER and mydata_F$DAILY_STRESS
z = 14.091, p-value < 2.2e-16

alternative hypothesis: true tau is not equal to ©
sample estimates:

#i# tau

0.1112779

cor.test(mydata_F$SUFFICIENT_INCOME, mydata_F$DAILY_STRESS, method = "kendall")

##

Kendall's rank correlation tau

##

data: mydata_F$SUFFICIENT_INCOME and mydata_F$DAILY_STRESS
z = -16.336, p-value < 2.2e-16

alternative hypothesis: true tau is not equal to ©

sample estimates:

#i# tau

-0.1290017

The results suggest that DAILY_STRESS is significantly correlated with GENDER (z=14.091, P<0.001,
tau=0.1112779) and SUFFICIENT_INCOME (z=-16.336, P<0.001, tau=-0.1290017).
Build the ordinal logistic regression model using polr function from MASS package.

In the formula, DAILY STRESS is DV, GENDER and SUFFICIENT_ INCOME are IVs.

Set Hess = TRUE to return hessian matrix.

mydata_F$DAILY_STRESS <- as.factor(mydata_ F$DAILY_ MEDITATION)

model.olr<- polr(formula = DAILY_STRESS ~ GENDER + SUFFICIENT_INCOME, data = mydata_F, Hess = TR
UE)

summary (model.olr)

Call:

polr(formula = DAILY_STRESS ~ GENDER + SUFFICIENT_INCOME, data = mydata_F,
it Hess = TRUE)

it

Coefficients:

Value Std. Error t value
GENDER -0.3457 0.03210 -10.77
SUFFICIENT_INCOME ©.2699 0.03533 7.64
H#it

Intercepts:

H#it Value Std. Error t value

0|1 -4.0754 0.1038 -39.2577
1|2 -2.7946 0.0884 -31.6051
2|3 -1.9452 0.0848 -22.9472
3|4 -1.3118 0.0835 -15.7093
4|5 -0.8977 ©.0830 -10.8108
5|6 -0.3622 0.0827 -4.3789
6|7 -0.1010 0.0827 -1.2215
7|8 0.4822 0.0827 5.8339
8|9 0.7552 0.0827 9.1284
0

9|10 0.8885
##
Residual Deviance: 54911.54
AIC: 54935.54

.0828 10.7280

The results suggest that an increase in value of GENDER by one unit decreases the expected value of
DAILY_STRESS in log odds by 0.3457, and an increase in value of SUFFICIENT_INCOME by one unit increases the
expected value of DAILY_STRESS in log odds by 0.2699. Give the first category (0|1) as an example, the estimated
model can be written as:

logit(P(Y<1)) = -4.0754 - (-0.3457) * GENDER - 0.2699 * SUFFICIENT _INCOME

To conclude, DAILY_STRESS is positively influenced by GENDER and negatively influenced by SUFFICIENT_INCOME .
Female’s stress level is higher than male. The stress level of people who have sufficient income to cover life basic
expenses is lower than that of people whose income is not or hardly sufficient.

